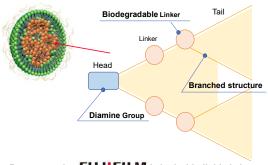
Design and Development of Novel Ionizable Lipid Which Exhibits Extrahepatic Gene Delivery Aspiring to ex/in vivo CAR-T Therapy

OKohei Yasuda, Daisuke Nakagawa, Kohei Shimizu, Sayako Umetani, Kazuhiko Nakata, Misaki Masui, Nao Yamazaki, Yuta Murakami, Shinichi Hashimoto, Shigetomo Tsujihata, Hirofumi Fukunaga FUJIFILM Corporation FUJIFILM Corporation 13th international mRNA health conference

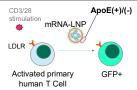
Abstract


[Introduction & Objectives] Delivering nucleic acids to immune cells, such as T cells, holds significant potential for cancer therapy. In general, it is well known that most lipid nanoparticles (LNPs) tend to bind to apolipoprotein E (ApoE) in the bloodstream, leading to predominant uptake by the liver in vivo. We have developed proprietary GMP-compliant ionizable lipids (e.g. FL-0445) for use in mRNA vaccines and liver-targeting ionizable lipids. However, the extrahepatic delivery of LNPs remains a challenge. In this study, we designed a novel ionizable lipid that exhibits extrahepatic gene delivery aiming for ex vivo and in vivo CAR-T therapy.

[Methods] ①We prepared various LNPs using our ionizable lipids library and evaluated their mRNA delivery efficiency to human primary T cells in the presence or absence of ApoE ② assessed the in vivo delivery efficiency of expression of human erythropoietin(hEPO) and luciferase(Luc) ③evaluated the utility of CAR-knock-in ex vivo ④prepared antibody-conjugated LNPs and administered them to PBMCs, followed by assessment of mRNA delivery efficiency in each cell type.

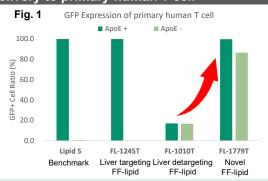
[Results] FL-1779T- LNP exhibited ①Small particle size and high mRNA delivery efficiency to primary human T cells independent of ApoE presence ②Significantly lower hEPO and Luc expression ③ Efficient CAR knock-in in T cells ex vivo ④ Cell-specific mRNA delivery by antibody-conjugation.

[Conclusions] These findings suggest that FL-1779T-LNP is a promising platform for nucleic acid delivery in both ex vivo and in vivo CAR-T cell therapies.

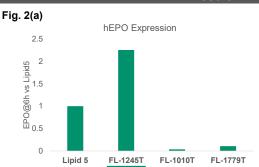

Design concept of novel ionizable lipid

Representative FUJIFILM 's ionizable lipid skeleton

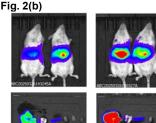
- Head: Introduction of substituents to adjust the apparent pKa
- Tail: Control of hydrophobicity to make particle size smaller


Result 1: mRNA delivery to primary human T cell

(Fig 1.) Primary human T cells were stimulated for 3 days before adding mRNA-GFP-loaded LNPs, and GFP-positive cells were measured by flow cytometry after 24 hours.


Table 1. Characterization of LNPs

Lipid	Size (nm)	PDI	EE (%)
Lipid 5	81	0.11	95
FL-1245T	115	0.08	90
FL-1010T	231	0.06	84
FL-1779T	79	0.13	98

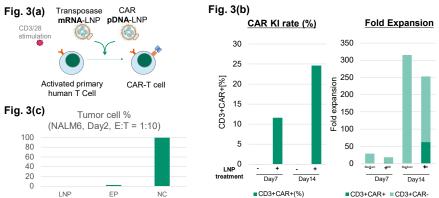

√ FL-1779T-LNP has small particle size compared with FL-1010T. FL-1779T-LNP exhibited high mRNA delivery efficiency to primary human T cell even in the absence of ApoE.

Result 2: in vivo Study – hepatic, extrahepatic mRNA delivery

(Fig 2(a).) hEPO protein expression levels of mRNA-LNP in plasma compared with benchmark LNP, 6 hours after i.v. administration (0.1 mg/kg as hEPO mRNA),

(Fig 2(b).) fluc-mRNA encapsulated LNP was administered to ICR mice at a dose of 0.2mg/kg (i.v.) and fluc luminescence was imaged and quantified by IVIS. (Top 5hr, Bottom: 6hr)

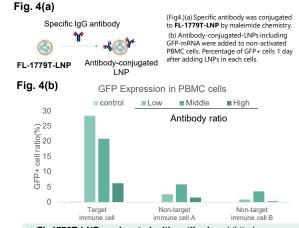
Liver targeting FF-lipid


(Li: liver, Lu: lung, S: spleen K: kidney, H: heart)

Formulation B Formulation A

 \checkmark FL-1779T exhibited little protein expression in the liver.

√ Spleen delivery might be controlled by formulation. We are analyzing which specific cell populations are targeted


Result 3: ex vivo CAR-Knock-In Study

(Fig 3.) (a) Protocol: Day 0, primary human T cells were activated with anti-CD3 and anti-CD28 antibodies. Day 3, Transposase mRNA LNP and CAR pDNA LNP were added to the cultures. (b) Percentage of CD3+ CAR+ cells 1 day after adding LNPs followed by CAR knock-in with LNP, then cultured until Day 7 and Day 14. (c) Percentage of Tumor cells in NALM6 cells after 2 days.

- ∨ FL-1779T-LNP exhibited CAR knock-in efficiency of 24.6% in 14 days.
- ✓ FL-1779T-LNP exhibited low cell growth suppression.
- ⇒ FL-1779T has potential for use in ex vivo CAR-T production.

Result 4: Potential of active-targeting

- √ FL-1779T-LNP conjugated with antibody exhibited selective payload delivery to target immune cells
- ⇒ FL-1779T is potential lipid for active targeting.

Fujifilm CDMO service

For customers at research phase

- We can provide our original patented ionizable lipid including FL-1779T as long as you sign an NDA/MTA. Formulation development and optimization from discovery to clinical

For customers at development phase

- Microfluidic mixing system (NanoAssemblr® system)
 Scalable & reproducible (upto GMP manufacturing)
 - Supported by Precision Nanosystems through strategic alliance Analytical services including the development of test methods

[Disclosure Statement of COI]

The authors have no financial conflicts of interest disclose concerning the study

Please Visit Our Booth No. 8!

& another poster No.33, 117

Our Website & LinkedIn:

