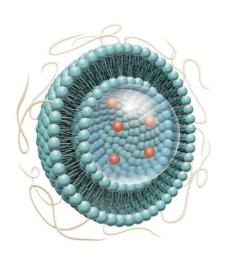
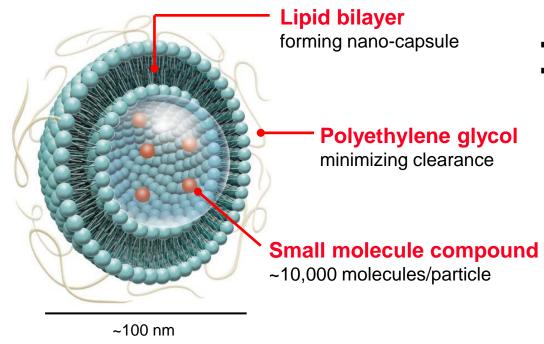


Rediscovering Potential of Liposome in Advanced Drug Discovery in Oncology


Susumu Shimoyama

President

FUJIFILM Pharmaceuticals U.S.A., Inc.



Take Home Message

- Liposome is a clinically proven drug delivery technology using lipid-based nanoparticle encapsulating small molecule compounds
- Liposome can be an option to address challenges in PK, safety, and efficacy profiles

What Is Liposome?

Liposome formulation is expected to provide

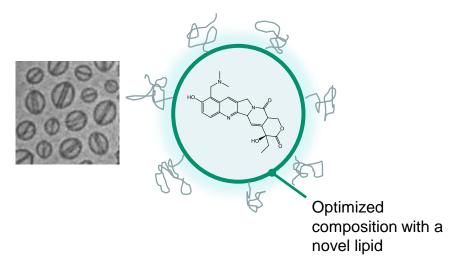
- Prolonged plasma half-life
- Preferential distribution to tumor and inflamed tissues
- Improvement of safety and efficacy

Clinically proven modality

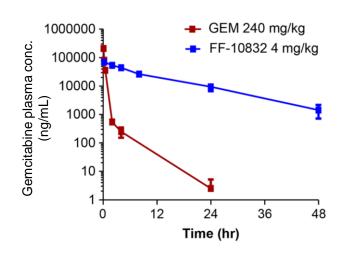
- 15 approved drugs mainly in oncology field
- Served as standard therapies
 - Onivyde for pancreatic cancer (1st line)
 - Vyxeos for some types of AML (1st line)
 - Doxil for platinum-resistant ovarian cancer

Туре	Name	API		
Cancer therapy (Drug formulation)	Doxil®/ CaelyxTM	Doxorubicin		
,	DaunoXome®	Daunorubicin		
	Onivyde®	Irinotecan hydrochloride trihydrate		
	Myocet®	Doxorubicin		
	Mepact®	Mifamurtide		
	Marqibo®	Vineristine Daunorubicin+cytrabine Doxorubicin		
	Vyxeos®			
	Zolsketil®			
Other application (Drug	AmBisome®	Amphotericin B		
formulation)	DepoCyt®	Cytarabine		
	Visudyne®	Verteporphin		
	DepoDur®	Morphine sulfate		
	Arikayce®	Amikacin		
	Exparel®	Bupivacaine		
J Pharm Biomed Anal., 2023	3, 236, 115751	FUJIFILM Holdings Corporation 3		

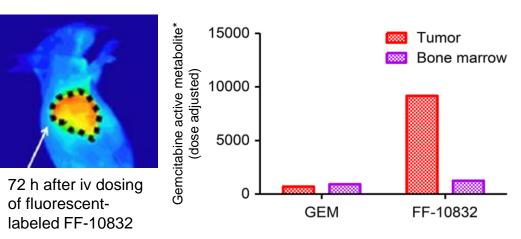
Fujifilm's Liposome Project as a Showcase


FF-10832 (liposomal gemcitabine)

- Phase 2a in the US
- FDA orphan drug designation for biliary tract cancer
- Liquid solution for intravenous dosing
- 3.5 years stability at the refrigerated condition


FF-10850 (liposomal topotecan)

- Phase 1 expansion part in the US
- FDA orphan drug designation for Merkel cell carcinoma
- Liquid solution for intravenous dosing
- 3 years stability at the refrigerated condition



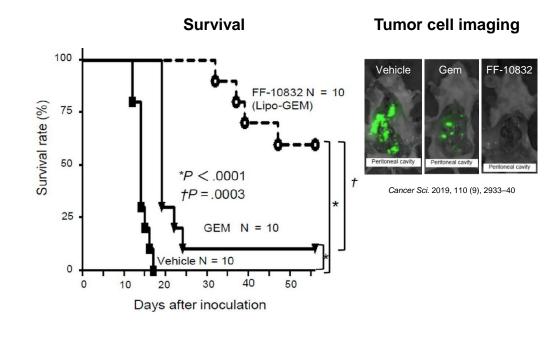
Non-clinical Data of Liposomal Gemcitabine (FF-10832) - Prolonged Plasma Half-life and Preferential Tumor Exposure

Murine plasma PK

Preferential tumor exposure in mice

*AUC/dose of dFdCTP, active metabolite of gemcitabine (ng*hr/g)/(mg/kg)

Non-Clinical Data of Liposomal Gemcitabine (FF-10832)


- Superior Anti-tumor Activity to Gemcitabine with Much Less Dose

Capan-1 subcutaneous model

Vehicle 2000 GEM 240 mg/kg FF-10832 2 mg/kg Tumor volume (mm³) 1500 FF-10832 4 mg/kg 1000 500 20 25 30 10 15 Days after inoculation

Intraperitoneal disseminated model

(Luciferized Colon26 model)

Pharm Res. 2021, 38,1093-1106,

FDA Granted Orphan Drug Designations to Fujifilm's Liposomes

FUJIFILM Pharmaceuticals U.S.A., Inc.

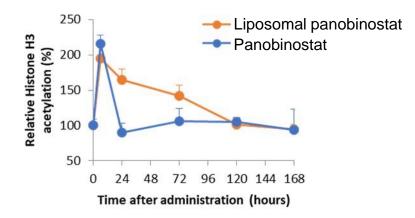
1,274 followers 2mo • 🔇 Liposomal gemcitabine (FF-10832) for biliary tract cancer

This week the **#FDA** has granted orphan drug designation to Fujifilm's FF-10832 — an investigational liposomal formulation of gemcitabine — for the treatment of biliary tract cancers (BTC).

FUJIFILM Pharmaceuticals U.S.A., Inc.

1,274 followers 1vr • 🔇 Liposomal topotecan (FF-10850) for Merkel cell carcinoma

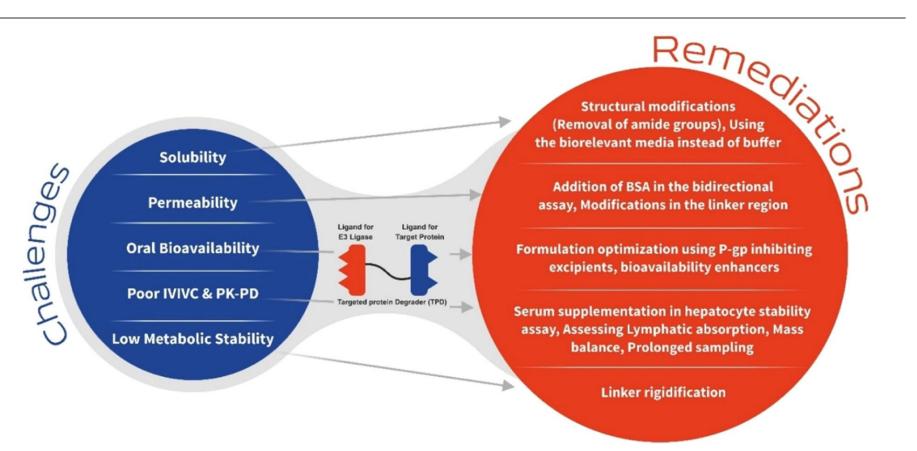
We are really excited to announce that FF-10850, liposomal topotecan, has been granted the FDA orphan drug designation for Merkel cell carcinoma, which is a highly aggressive skin cancer. We are actively enrolling Merkel cell carcinoma cohort in the expansion part of phase 1 study (NCT04047251).


Liposome Not Only for Chemo But Also for Molecular Targeted Drugs

Fujifilm internal experiences

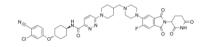
- Liposomal panobinostat (pre-clinical candidate)
- Liposomal BET inhibitor (pre-clinical candidate)

3rd party pipeline


SMP-3124 (liposomal CHK1 inhibitor)

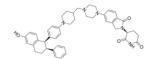
SMP-3124 is an injection, a liposomally encapsulated CHK1 (checkpoint kinase 1) inhibitor. CHK1 is activated by DNA damage response, then arrests the cell cycle, and induces DNA repair via serine-threonine kinase. CHK1 inhibition leads cancer cell with high replication stress to apoptosis by inducing further DNA damages. SMP-3124 is expected to strengthen the anti-tumor activity and weaken side effects by changing pharmacokinetics of the compound with liposomal nanomedicinal encapsulation.

Liposome Can Be an Option to Address ADMET Issues of TPDs

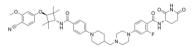


Can We Encapsulate TPDs in Liposome?

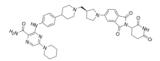
TPD test set


- Large molecular weight
- Low solubility

ARV-110


Androgen receptor degrader MW: 812.3

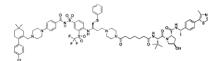
ARV-471


Estrogen receptor degrader MW: 723.9

ARV-766

Androgen receptor degrader MW: 808.0

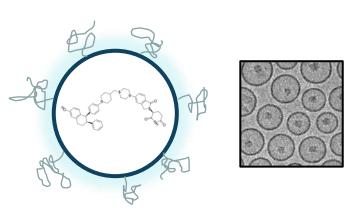
NX-2127


BTK degrader MW: 719.8

Fujifilm's established conditions for encapsulation

Fujifilm's proprietary versatile liposome formulation

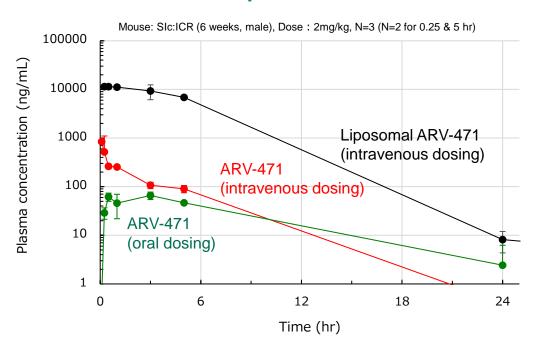
DT2216


BCL-xL degrader MW: 1542.4

YES! - TPDs Can Be Encapsulated by Liposome

	ARV-110	ARV-471	ARV-766	NX-2127	DT2216
Molecular weight	812.3	723.9	808.0	719.8	1542.4
Yield	98%	96%	99%	>99%	46%
Encapsulation ratio	>99%	99%	99%	91%	88%
Particle size	108 nm	99 nm	105 nm	110 nm	118 nm
Morphology (TEM)					

Improved Plasma Exposure of ARV-471 by Liposomal Formulation


Liposomal ARV-471

Particle size: 99 nm API concentration: 0.50 mg/mL Encapsulation efficiency: 99%

Yield: 96%

Mouse pharmacokinetics

Animal efficacy study is ongoing. Please stay tuned!

One-stop Services for Liposome Design and Manufacturing

Through the internal liposome R&D and manufacturing experiences, Fujifilm has

- Proprietary versatile liposomal formulation
- Established analytical methods, manufacturing process, supply chain, GMP facilities and QMS
- Capable and experienced formulation scientists, analytical scientists, and manufacturing staffs

Commercialization

Feasibility

 Proprietary formulation

Optimization

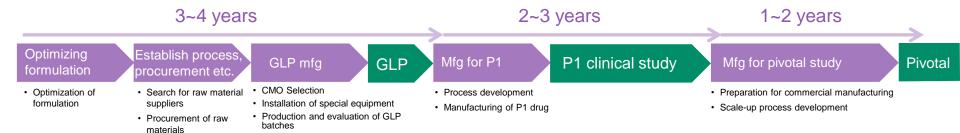
- Formulation
- Analysis

Development

- Processes
- Methods

Versatile platform formulation

BSEL, Fujifilm R&D Center Formulation design & Analysis

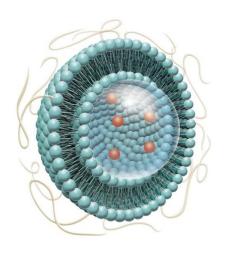

CTM Preparation

TRD, Pharmaceuticals R&D Center Development & Tech Transfer

701&702, GMP manufacturing factories CTM & commercial scale manufacturing

Minimized Timeline from Feasibility Study to Commercial Manufacturing

General timeline for liposomal drugs from scratch



Timeline with Fujifilm's liposome CDMO service

- Minimize timeline and resources leveraging Fujifilm's established liposome formulation, capabilities, knowledge, facilities and equipment
- Initial feasibility study can be done in 1 month

Take Home Message

- Liposome is a clinically proven drug delivery technology using lipid-based nanoparticle encapsulating small molecule compounds
- Liposome can be an option to address challenges in PK, safety, and efficacy profiles

Please visit our booth (#7) for further discussion!

E-mail: susumu.shimoyama@fujifilm.com

